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Abstract The focus is set on the development and evaluation of a numerical mgodel describing
the impregnation stage of a method to manufacture fibre reinforced polymer composites, namely
the vacuum infusion process. Examples of items made with this process are hulls to sailing yachts
and containers for the transportation industry. The impregnation is characterised by a full 3D flow
in a porous medium having an anisotropic, spatial- and time-dependent permeability. The
numerical model has been implemented in a general and commercial computational fluid dynamic
software through custom written subroutines that: couple the flow equations to the equations
describing the stiffness of the fibre reinforcement; modify the momentum equations to account for
the porous medium flow; remesh the computational domain in each time step to account for the
deformation by pressure change. The verification of the code showed excellent agreement with
analytical solutions and very good agreement with experiments. The numerical model can easily be
extended to more complex geometry and to other constitutive equations for the permeability and
the compressibility of the reinforcement.

Introduction
There are numerous ways to manufacture fibre reinforced polymer composites
ranging from hand lay-up in small series to fully automatic pressing of
components to the automotive industry. A method that is being increasingly
used for production in small series is the vacuum infusion process. The
advantage with this method is that large and high strength items can be
produced in relatively low cost tooling and with low emissions of harmful
substances. Examples of products are hulls to sailing yachts and containers for
the transportation industry. The vacuum infusion technique is well known and
established since long. The first patents are registered already in 1950 (Marco
method, 1950). Still, process development has until recent years mainly been
based on trial and error and the behaviour of the process is therefore not fully
understood and the modelling is so far not sufficient (Smith, 1999; Williams
et al., 1996). The risk of severe economic losses in the case of an unsuccessful
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charge is augmented with an increased part size and the corresponding
increase in material value. An essential requirement for an optimised and
reliable processing is therefore the development of tools that can guide the
processing engineers in the choice of reinforcement, flow enhancing technique,
injection strategy, injection parameters, etc.

The fundamental principle of the vacuum infusion process is that dry fibre
reinforcement is placed on a stiff mould half and covered with a flexible and
airtight bag. The bag is then sealed to the mould except at certain positions
being open for resin supplies and outlets. By keeping atmospheric pressure at
the resin inlets and reducing the pressure at one or several positions in the
formed cavity, liquid resin is forced to impregnate the reinforcement. A further
result of the difference between the ambient pressure and the pressure within
the cavity is a compaction force and a corresponding compression of the elastic
stack. Once the mould is sufficiently filled, the pressure in the cavity is evened
out and the resin is cured. In order to shorten the cycle-time, flow enhancing
methods are often used with the vacuum infusion process. This may result in
an important out-of-plane flow at the flow-front that is often neglected in the
modelling of the well-characterised process resin transfer moulding (RTM).
Another difference from RTM is the variation of height of the cavity as a
function of the local pressure, implying that the flow and compaction equations
become coupled.

To increase the understanding of the vacuum infusion process we have
performed a study of real mouldings in a simple geometry (Andersson et al.,
2002, 2003). In particular, a Digital Speckle Photography system has been used
to measure the overall movement of the reinforcement and the through
thickness flow-front has been measured with flow visualisation, video
recording and image analysis. The experimental study was confined to one
geometry and one particular material combination. A generalisation of the
results to form prevalent conclusions and rules-of-thumb is therefore inevitable.
One step towards a generalisation was presented by Hammami and Gebart
(1998) where a 1D model was derived. In this paper, we move further by
performing simulations on the vacuum infusion process in a general 3D
computational fluid dynamics (CFD) code. The advantage of taking such an
approach is that the calculations are based on equations tested in numerous
applications, that we can do simulation in almost any geometry, and that we,
quite easily, can extend our simulations to deal with other constitutive
equations and additional phenomena.

Analytical background
During all fabrication of fibre reinforced composites the resin is, in some way,
forced into the fibre network. In order to predict the time for the resin to fill a
certain volume of pore space between fibres and the corresponding filling
pattern, analytical expressions and mould filling simulation codes have been
developed (Diallo et al., 1998; Fracchia and Tucker III, 1990; Gebart et al., 1992;
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Koorevar, 1995). These tools are mainly designed for the RTM process with
stiff moulds and are based on conservation of mass and Darcy’s law which in
2D may be expressed as:

ui;i ¼ 0 ð1aÞ

uið1 2 f Þ ¼ 2
Kij

m
pj i; j ¼ 1; 2 ð1bÞ

where u is the volumetric flux density (also called superficial velocity) in the
fibre preform, f is the fibre volume fraction, K is the permeability of the fibre
preform, m is the viscosity of the resin and p is the pressure. The combination of
equation (1(a) and (b)) applies to flow in the porous media as long as the
Reynolds number is sufficiently low, the fibres are stationary and the fluid is
incompressible and can be modelled as Newtonian. In the vacuum infusion
process the fibres are allowed to move in the through thickness direction and
the equations are modified accordingly (Hammami and Gebart, 1998):

ðuhÞi;i ¼ 2
›h

›t
; ð2aÞ

p þ pr ¼ p0; ð2bÞ

Kij ¼ g1
ijðhÞ; ð2cÞ

h ¼ g 2ð prÞ ð2dÞ

where h is the height of the stack, pr is the pressure on the reinforcement, p0 is
the ambient pressure and g 1,2 are the constitutive functions. These functions
can be derived experimentally from permeability and compaction
measurements. Fortunately, only a few measurements are required since a
number of theoretical models have been proposed. Two models for the
permeability were presented by Gebart (1992) for flow along and perpendicular
to a perfect arrangement of fibres. Both these models are expressed in terms of
the fibre volume fraction, f and the fibre radius R according to:

Kk ¼
8

c

ð1 2 f Þ3

f 2
R 2; ð3aÞ

K’ ¼ C

ffiffiffiffiffiffiffiffiffi
f max

f

s
2 1

 !5=2

R 2; ð3bÞ
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f ¼
nz

hrs
ð3cÞ

The maximum fibre volume fraction fmax and the two constants c and C are
dependent on the actual fibre arrangements, e.g. quadratic or hexagonal
packing, n is the number of layers of the fabric, z is the weight per unit area of
each fabric layer and rs is the density of the fibres. The first of these equations
is based on the hydraulic radius and can be recognised as the often-used
Kozeny-Carman equation. The relation between the pressure on the
reinforcement and the height of it is often written in the following form
(Toll, 1998):

pr ¼ kEð f m 2 f m
0 Þ ð4Þ

where k and m are constants, E is the stiffness of the fibres and f0 is the fibre
volume fraction of the reinforcement without any load. By a micromechanical
analysis it has been shown that the constant m is equal to 3 for 3D wads and
5 for planar networks (Toll, 1998). Many reinforcements used in vacuum
infusion do, however, consist of continuous fibre bundles. For such materials m
has empirically been given values spanning from 7 to 16 (Lundström and
Sandlund, 1997; Toll, 1998). It has been further shown that the stiffness is
reduced by lubrication of the fibres when the reinforcement is impregnated
with resin (Andersson et al., 2002, 2003; Toll, 1998; Williams et al., 1998). To be
able to account for the new elastic response in the numerical model, equation (4)
must be adjusted. A true modification can be derived from compaction
measurements of wetted and dry reinforcements. We will however, at this stage
take a heuristic approach and use the following relationship:

pr ¼ kEð f m 2 ð f 0 þ kÞmÞ ð5Þ

where k accounts for the softening of the reinforcement and is consequently,
zero for a dry fabric and larger than zero for a wetted fabric.

The equations required to model the impregnation taking place during
vacuum infusion have now been outlined. These equations were previously
solved in a quasi-stationary way with flow in one direction only (Hammami
and Gebart, 1998). However, to get a complete solution another approach must
be used. We will here present such an approach based on a general CFD-code.

Numerical model
A general application of the numerical solution method to a physical problem
involves the choice of the mathematical model, discretisation method,
coordinate system, numerical grid, iterative methods, etc. Here, the eligibility
is defined to the components available in the commercial and general CFD
software CFX-4 from AEA Technologies. CFX-4 is a finite-volume based code
using a structured multi-block grid. The code offers a number of choices
regarding, for instance, the mathematical models and iterative methods and it
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handles moving boundaries by the volume of fluid algorithm (Ferziger and
Peric, 1999). The latter was naturally crucial in the choice of code while the
former facilitate a development of the model to similar processes and other
materials. The modelling of the vacuum infusion process in CFX implies
several subtle challenges and we shall deal with these in due order.

Governing equations and the finite volume method
The equations to be solved are the general conservation laws. In Cartesian
coordinates using tensor notation, the differential form of the full 3D generic
conservation equation is (Ferziger and Peric, 1999):

›ðrfÞ

›t
þ

›ðrvjfÞ

›xj

¼
›

›xj

G
›f

›xj

� �
þ qf ð6Þ

where G is the diffusivity of the considered quantity f, r is the density of the
fluid and vj is the actual fluid velocity (rather than the superficial velocity used
in equation (1) and (2). For conservation of mass, where f ¼ 1; equation (6)
simply reduces to the continuity equation and for conservation of momentum,
where f ¼ vi; it reduces to the Navier-Stokes equations for a Newtonian fluid.
By changing the coefficients and adding source terms (qf), equation (6) can be
modified to correspond to the applied conditions. Most commercial CFD-codes
allow such modifications. The finite volume method solves the integral form of
the generic conservation equation (equation (6)):

›

›t

Z
V

rf dVþ

Z
S

rfvjnj dS ¼

Z
S

G
›f

›xj

nj dS þ

Z
V

qf dV ð7Þ

In fluid flow it is more convenient to deal with the flow within a certain spatial
region rather than with a given quantity of matter. The solution domain is
therefore, divided into a finite number of control volumes (CV), where V and S
denote the volume and the surface of a CV and nj its surface normal.
Equation (7) is applied to each CV, ensuring conservation for both the single CV
and the whole solution domain, i.e. the method is conservative by construction.
Approximating surface and volume integrals by appropriate quadrature
formulae results in an algebraic equation for each CV (Ferziger and Peric, 1999).

Flow through porous media
The geometry of the individual fibres in the reinforcement is in this case clearly
too complex to be resolved with a grid. Instead, the Navier-Stokes equations are
modified to account for the extra pressure drop in the flow generated by the
flow through the porous medium. This is implemented while retaining both
advection and diffusion terms (AEA Technology plc., 1999). The mathematical
representations of the alteration are the transfer terms for the interaction
between fluid and solid, in addition to the usual pressure gradient and diffusion
terms in the momentum equation. With g as the volume porosity scalar and Aij
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as the area porosity tensor for a porous medium, the general scalar equation
(equation (6)) for the conservation of momentum for an incompressible fluid is:

›

›t
ðgrviÞ þ ðrAjkvkviÞj 2 mðAjkðvk;i þ vi;kÞÞj ¼ 2gRjivi 2 gpj ð8Þ

where Rij represents a resistance to the flow in the porous medium, proportional
to the inverse of the permeability, K21

ij : Equation (8) corresponds to Brinkman’s
equation (Kaviany, 1995). If the permeability is low, the first term on the right
hand side of equation (8) becomes large and is balanced by the pressure
gradient term, while the advective and viscous terms on the left hand side are
negligible in comparison. Thus, in the limit of a large resistance and stationary
flow, equation (8) reduces to:

0 ¼ Rjivi þ pj ð9Þ

which is identical to Darcy’s law (equation (1(a))). Hence, the final outcome of
importance here is that in CFX-4, where equation (8) is solved, the results will
be the same as if Darcy’s law (equation (1(a))), was solved.

Moving boundaries
We will encounter two types of moving boundaries. First, the impregnation
process is modelled as homogeneous two-phase flow with a free surface.
Mathematically this implies that the momentum equations yield identical
velocity fields for both phases, except for the volume fractions, which are
obtained by solving separate continuity equations. This approximation is valid
since the volume fractions are close to either zero or unity in the majority of the
control volumes. An appropriate initial specification of the volume fractions of
the two phases is a sharp change across the interface separating them. Due to
numerical diffusion, the interface will become geometrically smeared out with
time. In order to conserve the initial sharpness of the interface, CFX-4 provides
a special surface sharpening algorithm for two-phase flows (AEA Technology
plc., 1999). Provided the mesh is fine enough to resolve the free surface, the
algorithm identifies fluid on the wrong side of the interface and moves it to the
correct side, with the condition that volume is at all times conserved. Also, each
time step should allow the flow-front to advance not more than one computing
cell at a time.

Second, the deformation of the reinforcement due to the combination of
external pressure and internal pressure in the form of resin pressure and
reinforcement stiffness defines the other type of moving boundary. The
thickness of the stack is calculated based on a force balance according to
equation (5), where the difference between wet and dry reinforcement has been
included. The permeability is then updated according to equation (3(a)). This is
followed by iterations of the solution for a new pressure distribution. When
convergence is achieved, a new time step is applied and the whole procedure is
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repeated from the beginning. At all times, the numeric grid has to be updated to
the changes in geometry.

Verification and validation of model with stiff mould
Verification is defined by Roache (1998) as a demonstration that the numerical
solution of a set of partial differential equations is correct, while validation is
defined as a demonstration that the chosen set of equations is the best possible
representation of the real physical situation. We shall start the verification
process by solving Darcy’s law for a transient flow through a porous medium
between the parallel solid boundaries. The analytical solution for an isotropic
permeability is (Gebart, 1992):

x2
f ¼

2KDp

mð1 2 f Þ
t ð10Þ

where xf is the flow-front position measured from the inlet and t is time. In order
to compare the results from the numerical solution to the analytical solution, i.e.
to verify the numerical model, both solutions are carried out for a real case
(Andersson et al., 2002, 2003). The permeability of the reinforcement is set to
9.2£ 10211 m2, the driving pressure to 0.1 MPa, the resin viscosity to 0.180 Pas
and the fibre volume fraction to 52.5 per cent. The solid dots in Figure 1
represent the numerical solution, for which the smallest time steps are of
order 1022 s, whereas the straight line is predicted by equation (10). A straight
line fitted to the numerical solution reveals a difference from the analytical
solution of less than 1 per cent. Even though the error from truncation errors,

Figure 1.
Numerical solution (dots)

and analytical solution
(straight line) for

transient flow through a
porous medium of

isotropic permeability
between parallel solid

boundaries
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etc., could probably be decreased further by grid refinement and tighter
iterative convergence criterion, this error level was considered acceptable.

Now, bringing the verification process one step further, we study the more
general case of two materials of equal thickness (10 mm), one on top of the
other, each with a different and non-isotropic permeability. The curves in
Figure 2 show the resulting flow-front at different time steps (1, 5 and 13 s,
respectively) as calculated by the CFD-code whereas, the solid dots are
predicted by a traditional RTM simulation program solving Darcy’s law
(Koorevaar, 1995). As an indirect verification, Figure 2 shows an excellent
agreement. For reference, the ratio of the in-plane permeability and the through
thickness permeability is 10 for both materials, which is also the ratio of the
in-plane permeability for the two materials as compared to each other.

For the validation process we turn to experimental result presented by
Gebart et al. (1991). Again, we study the general case of two materials of equal
thickness, s, one on top of the other. Now we let both the materials to have
different but isotropic permeability, K1 and K2, meaning that the permeability
in the through thickness direction and in the in-plane direction is equal within
each material. Also, the fibre volume fraction is assumed to be the same for
both materials. Under these conditions, it has been shown both analytically
and experimentally (Gebart et al., 1991; Fracchia and Tucker III, 1990) that
the ratio of the flow-front lead-lag l (Sun et al., 1998) and the layer thickness s is
a linear function of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=K2

p
with an experimentally obtained constant of

proportionality of 0.38. The solid straight line in Figure 3 with a slope of 0.37 is
a best fit to numerical solutions (solid dots) obtained with the CFD-code for the
shown permeability ratios and a fibre volume fraction of 50 per cent. Thus,
the overall conclusion is that the new CFD-based model is an acceptable
approximation of the mathematical model for vacuum infusion.

Figure 2.
Numerical solutions for
transient flow through
two non-isotropic
materials of equal height
between solid parallel
boundaries. With flow
from left to right, the
curves represent the
flow-front after 1, 5 and
13 s, respectively. The
solid dots are solutions
obtained with an
RTM-code
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Examples of simulations with the full model
We will here exemplify the strength of the developed method by results
from three simulations in a simple geometry. The results are illustrated by
the liquid volume fraction in the pores during the injection and the
corresponding pressure distribution in the resin. First, consider a low
Reynolds number and parallel flow of a Newtonian liquid into a porous
medium having a constant permeability. With the medium confined in a
mould consisting of two parallel and stiff plates, the pressure gradient is
constant. This is exemplified in Figure 4 where uniformly distributed isobars
are presented as the vertical lines.

Figure 3.
Scaled flow-front lead-
lag versus the square

root of the permeability
ratio for flow through

two isotropic materials of
equal height between

solid parallel boundariesNote:
The straight line represents the analytical solution and the solid dots are numerical solutions

Figure 4.
Evenly distributed

isobars (the vertical
lines) as obtained with

the CFD-code for parallel
flow of a Newtonian
liquid into a porous

medium with constant
and isotropic

permeability placed
between two parallel stiff

plates

Note:
The highest pressure is at the inlet to the left. The regular position of the isobars indicates a
constant pressure gradient in the flow direction
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However, the pressure distribution changes in accordance with the shape of the
flow-front when two layers of fibre reinforcement with different permeability
are used, cf. Figure 5. Here the ratio of the in-plane permeability of the upper
layer, K1, and the in-plane permeability of the lower layer, K2, is 10. The
permeability in the transverse direction is held constant and equal to K2 in both
layers.

In the last example, shown in Figure 6, the upper stiff mould is replaced by a
flexible bag, cf. equation (5) with k ¼ 0:1; kE ¼ 289:5 £ 1026; f 0 ¼ 0:42 and
m ¼ 14:19: Now the thickness of the stack is largest at the inlet where the
pressure in the resin approaches the ambient pressure. Moving towards the
outlet where the vacuum level is highest, the thickness becomes smaller and
smaller. Also, the decrease in stiffness as a result of lubrication of the fibres
results in a thickness and consequently the permeability is minimum at the
flow-front.

As can be confirmed by a qualitative comparison between Figures 4 and 6,
these effects result in a small but detectable difference in pressure distribution.
It should be noticed that the value of k that is employed has simply been

Figure 5.
Evenly distributed
isobars as obtained with
the CFD-code for flow of
Newtonian liquid in
two layers of fibre
reinforcement with
different permeability Note:

The highest pressure is at the inlet to the left

Figure 6.
Evenly distributed
isobars as obtained with
the CFD-code when the
upper boundary is a
flexible bag

Note:
The highest pressure is at the inlet to the left. The thickness of the stack decreases towards the
outlet but because of a change in stiffness due to wetting of the fibres a thickness minimum is
observed instantly behind the resin flow-front
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guessed and the other values used in Figure 6 are valid for one fabric only
(Lundström and Sandlund, 1997). To what extent alterations of these quantities
will influence the impregnation process is the subject of ongoing work in our
group.

Conclusions and future work
It has here been shown that the general and commercial CFD-code CFX-4 can
be used for simulations of the vacuum infusion process. As compared to
standard RTM-simulation programs it is possible to account for the effects of
through thickness flow. In contrast to RTM-codes the new model also accounts
for thickness variations during impregnation, which is crucial for a realistic
model (Andersson et al., 2002, 2003). The verification of the code showed an
excellent agreement to analytical expressions and excellent conformity with
simulations done with an RTM-code. Validation of the model against
impregnation of a heterogeneous stack of reinforcements indicates that the
chosen set of equations is a most adequate representation of reality.

Future work will involve further validation of the code against experimental
results (Andersson et al., 2002, 2003) and simulation of vacuum infusion of real
components. Furthermore, the code will be used to form general guidelines for
the vacuum infusion process. Finally, we will investigate the possibility of
process optimisation and studies of the effect of new types of materials and
processing conditions.
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